Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net Pan et al., ECCV 2018.

Presenter: Yoonki Cho

Contents

- 1. Introduction
- 2. Backgrounds
- 3. Method
- 4. Experiments
- 5. Quiz

Introduction

Motivation & Research Goal

Problems of Existing CNN Architectures

• Existing studies focus on improving the performance on a single domain.

Problems of Existing CNN Architectures

- Can we directly apply the model trained on domain A to domain B?
 - o No. Most CNN architectures are not generalizable to unseen domain.
 - There are always domain gaps.

Problems of Existing CNN Architectures

- To overcome this issue,
 - o Transfer Learning.
 - Fine-tune the model on the target domain with labels.
 - o Domain Adaptation.
 - Use the statistics of the target domain to facilitate adaptation.
 - o Domain Generalization.
 - Train the model on several source domains to improve the generalization.

Research Goal

• This paper aims to develop the CNN architecture to improve the learning and generalization capacities.

• It does not require either target domain data or related source domains.

Backgrounds

Batch & Instance Normalization

Batch Normalization (BN)

- It enables faster convergence of CNN architecture.
 - Reduce the internal covariate shift.
 - o Reduce the effects of noise in the mini-batch sampling.
- Nowadays, it is the standard component in recent CNN architectures.

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}
```

Instance Normalization (IN)

- It normalize the mean&std of individual data sample in mini-batch.
- IN is often used in the style transfer.
 - o It can control the style (appearance) of images.
 - It filter out the instance-specific contrast information.

Method

Instance-Batch Normalization Networks (IBN-Net)

Instance-Batch Normalization Networks (IBN-Net)

- The authors insist that the appearance variance (e.g., style) causes the domain gap.
 - o Instance Normalization can control the style variance between images.
- This paper present a novel CNN architecture named IBN-Net.
 - Carefully integrates Instance Normalization (IN) and Batch Normalization (BN) in network layers.

Experimental observation

• Feature divergence between style and content variance.

Experimental observation

• Feature divergence between style and content variance.

Shallow layers are more sensitive to style variance!

Instance-Batch Normalization Networks (IBN-Net)

- From the observation,
 - They used IN and BN simultaneously in shallow layers (Style invariance).
 - To prevent the content discrimination, they did not add INs in deeper layers (Content maintenance).
- The authors propose the IBN-block for style invariance & content maintenance.
 - They replace the first three convolution groups (blocks) to IBN-blocks.

IBN-block

• IBN-block for ResNet-like architecture.

Fig. 3. Instance-batch normalization (IBN) block.

IBN-block

• It can be extended in various versions.

Fig. 4. Variants of IBN block.

Experiments

Results on ImageNet

• ImageNet results according to various appearance changes.

Table 1. Results on ImageNet validation set with appearance transforms. The performance drops are given in brackets.

	appearance	ResNet50 $[8]$	IBN-Net50-a	IBN-Net50-b
	transform	top1/top5 err.	top1/top5 err.	top1/top5 err.
	origin	24.27/7.08	22.54/6.32	23.64/6.86
Color	RGB+50	28.22/9.64	25.54/8.03	23.82/6.96
Color		(3.94/2.56)	(3.00/1.71)	(0.18/0.10)
Drightness	R+50	27.53/8.78	25.20/7.56	25.10/7.43
Brightness	11+30	(3.26/1.70)	(2.66/1.24)	(1.46/0.57)
Contrast	std $\times 1.5$	40.01/19.08	35.97/16.22	23.64/6.86
Contrast		(15.74/12.00)	(13.43/9.90)	(0.00/0.00)
Style	Monet	54.51/29.32	51.57/27.15	50.45/25.22
Otyle		(30.24/22.24)	(29.03/20.83)	(26.81/18.36)

Results on ImageNet

• Comparison over other CNN architectures.

Table 2. Results of IBN-Net over other CNNs on ImageNet validation set. The performance gains are shown in the brackets. More detailed descriptions of these IBN-Nets are provided in the supplementary material.

Model	original	re-implementation	IBN-Net-a
Model	top1/top5 err.	top1/top5 err.	top1/top5 err.
DenseNet121 [13]	25.0/-	24.96/7.85	24.47/7.25 (0.49/0.60)
DenseNet169 $[13]$	23.6/-	24.02/7.06	$23.25/6.51 \ (0.79/0.55)$
ResNet50 [8]	24.7/7.8	24.27/7.08	$22.54/6.32 \ (1.73/0.76)$
ResNet101 [8]	23.6/7.1	22.48/6.23	21.39/5.59 (1.09/0.64)
ResNeXt101 [31]	21.2/5.6	21.31/5.74	$20.88/5.42 \ (0.43/0.32)$
SE-ResNet101 [12]	22.38/6.07	21.68/5.88	$21.25/5.51 \ (0.43/0.37)$

Results on ImageNet

• Comparison with different design choices.

Table 4. Comparison of IBN-Net50a with IN layers added to different amount of residual groups.

Residual groups	I		1-2		1-4
top1 err.	24.27	23.58	22.94	22.54	22.96
top5 err.	7.08	6.72	6.40	6.32	6.49

Table 5. Effects of the ratio of IN channels in the IBN layers. 'full' denotes ResNet50 with all BN layers replaced by IN.

IN ratio	0	0.25	0.5	0.75	1	full
top1 err.	24.27	22.49	22.54	23.11	23.44	28.56
top 5 err.	7.08	6.39	6.32	6.57	6.94	9.83

Results on Semantic Segmentation

• Results on cross-domain semantic segmentation.

Table 6. Results on Cityscapes-GTA dataset. Mean IoU for both within domain evaluation and cross domain evaluation is reported.

Train	Test	Model	mIoU(%)	Pixel Acc.(%)
		ResNet50	64.5	93.4
	Cityscapes	IBN-Net50-a	69.1	94.4
Cityscapes		IBN-Net50-b	67.0	94.3
Cityscapes		ResNet50	29.4	71.9
	GTA5	IBN-Net50-a	32.5	71.4
		IBN-Net50-b	37.9	78.8
		ResNet50	61.0	91.5
	GTA5	IBN-Net50-a	64.8	92.5
GTA5		IBN-Net50-b	64.2	92.4
GIAS	Cityscapes	ResNet50	22.2	53.5
		IBN-Net50-a	26.0	60.9
		IBN-Net50-b	29.6	66.8

Results on Semantic Segmentation

• Comparison with domain adaptation methods.

Table 7. Comparison with domain adaptation methods. Note that our method does not use target data to help adaptation.

Method	mIoU	mIoU gain	Target data
Source only [11]	21.2	5.9	w/
FCN wild [11]	27.1	5.9	w/
Source only [32]	22.3	6.6	w/
Curr. DA [32]	28.9	0.0	w/
Source only [24]	29.6	7.5	w/
GAN DA [24]	37.1	7.5	w/
Ours - Source only	22.17	7.5	w/o
Ours - IBN - Source only	29.64	7.5	w/o

Feature Divergence Results

Summary & Conclusion

• The authors propos a novel CNN architecture called IBN-Net.

• IBN-Net achieves competitive results compared to recent CNN models.

• IBN-Net shows strong generalization capacities.

• IBN-Net can easily applied to the existing CNN model.

Thank you for the listening!

Appendix

Table 3. Results of IBN-Net variants on ImageNet validation set and Monet style set.

Model	origin	Monet
Model	top1/top5 err.	top1/top5 err.
ResNet50	24.26/7.08	54.51/29.32 (30.24/22.24)
IBN-Net50-a	22.54/6.32	51.57/27.15 (29.03/20.83)
IBN-Net50-b	23.64/6.86	$50.45/25.22\ (26.81/18.36)$
IBN-Net50-c	22.78/ 6.32	51.83/27.09 (29.05/20.77)
IBN-Net50-d	22.86/6.48	50.80/26.16 (27.94/19.68)
IBN-Net50-a&d	22.89/6.48	51.27/26.64 (28.38/20.16)
IBN-Net50-a \times 2	22.81/6.46	51.95/26.98 (29.14/20.52)